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VIII. Leakage currents in a segmented electrode generator

By M. G. Haings

Physics Department, Imperial College, London, S.W. 7; and consultant to
International Research and Development Co. Ltd, Newcastle upon Tyne 6

|

A 2

Segmented electrodes are being used extensively in magnetohydrodynamic flow experiments in
order to overcome the high impedance present in a continuous electrode system when the plasma
has a high Hall coefficient. Until recently the theoretical study of a segmented system has artificially
constrained the current to flow directly across the duct. Since this present work was undertaken
Witalis has investigated the onset of shorting of the Hall voltage between adjacent segments by
leakage currents due to insufficiently long insulator sections, by assuming that the segmentation
length is much smaller than the duct width. In this paper three methods are adopted for analysing
the effect of leakage currents and obtaining the electrical characteristics. These are conformal
mapping, Fourier series and an approximate equivalent circuit. Only the Fourier analysis method
requires no further assumptions other than periodicity and it reproduces Witalis’s criterion for
shorting when his additional assumptions apply. The equivalent circuit method is easier to apply
and will be more useful for a practical non-uniform duct.
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The plasmas that are commonly used in magnetohydrodynamic power generation experi-
ments possess a high Hall parameter f (~ ¢B[y,e¢,, from equations (10) and (11)). This is
because large magnetic fields are employed to obtain maximum interaction per unit
volume and because, being only slightly ionized, the dominant electron-atom collision
cross-section which determines the resistivity is small. Under these conditions / is inde-
pendent of electron density. The Hall effect can be included implicitly in a tensor conduc-
tivity or written explicitly in an Ohm law containing a scalar conductivity. It is easier
here to adopt the latter method.

The principal feature of the Hall effect is that the current flows at an angle f = tan™! f§
to the total Lorentz electric field. In a rectangular m.h.d. duct with continuous highly
conducting electrodes, the Lorentz electric field is perpendicular both to the direction of
plasma flow (which is parallel to the electrode surfaces) and to the magnetic field. The
current flows across the channel at the Hall angle, i.e. there is a component parallel to the
flow. This has two disadvantages. It causes the braking magnetomotive force to be at the
Hall angle to the plasma flow and also increases the internal impedance of the generator.
By segmenting the electrodes, an electric field component parallel to the electrode surface
and antiparallel to the plasma flow can be developed which, under idealized conditions,
tilts the total Lorentz electric field vector backwards at the Hall angle so that the current
flows directly across the duct. This is the ideal mode of operation of a Faraday generator.

It is easily seen that the length of each segment must be much smaller than the width
of the duct in order to be effective in constraining the current to flow directly across the
duct. What is not so obvious is the optimising ratio of insulator length to electrode length in
each segment. A large ratio would cause a high internal impedance near the electrode
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owing to the high concentration of current there. However, because the electric field is
normal to the electrode surface, the current enters the electrode at the Hall angle to the
normal and tends to concentrate on one electrode end. Therefore a smaller ratio does not
reduce the impedance substantially. At small ratios of the insulator to electrode length
current leakage will occur across adjacent segments thus making the segmentation less
effective. Near the insulator surface, since there is no current or flow velocity normal to the
surface, the electric field E, along the direction of plasma flow is equal to j,/o. Hence it
can be seen that if £, does not change sign along the path joining adjacent electrodes then
current shorting or leakage will occur.

The purpose of this paper is to examine this shorting mechanism which has so far been
neglected. Crown (1961) pointed out the mechanism qualitatively. Since the author
undertook this work, however, Witalis (1965) has published an analysis of a segmented
generator including the shorting effect. The notation here is adapted to that of Witalis.
Three methods of solution are put forward here, namely a conformal transformation (as
used also by Witalis), a Fourier analysis and an approximate equivalent electrical circuit.

PHYSICAL MODEL AND ASSUMPTIONS

The basic equations used are the Maxwell equations and the Ohm law. For a slightly
ionized gas Schluter (1950, 1951) and Kemp & Petschek (1958) have derived an appropriate
Ohm law. Taking the basic conditions for very slight ionization and electrical neutrality,

namely n, > Zn; = n, (1)
the following ordering procedure eliminates the dynamical terms in the electron and ion
momentum equations, where m; ~ m, > m,:

ENV.XBNVXBNJXBNVP“Nn“madV“> m;dv, VP, VP m, dv,
! ¢ n,e n,e n,e dt e dt  me me” e dt

This is valid provided there are no sharp discontinuities in the magnetic field. Then writing
frictional forces proportional to the difference in the mean velocity of the components, the
three momentum equations become

0 = Zen, (E4+v,xB)+n;n,¢,(v,—V,)+n;n,¢,(v,—V,),

i'%e " ie

0= —en,(E+v,xB)+n;n,¢;,(v,—v,) +n,n,¢,(V,—V,), (

—
Y

@
o

n,m, dva/dt+ VPa = NN, €5 (Vi_'V ) +nena €sa (V0~—Va>, (4
8 [(2kT m;m
where 6k =3 / (T Eﬁ’;) Qjr

and @;, is the elastic collision cross section. Consistent with the ordering procedure the total
density p and centre of mass velocity v are n,m, and v, respectively. Defining an ion slip
velocity v, = v,—V,; and electric current density § = n,e(v;—V,) equations (2) to (4) give

pdv/di+Vp = jx B, (5)
Vs (Z~1€' +€ )n n, = —jXB_jnaeea/e> (6)

_FxBr1Z e, — m] }XB ) xB 3 n, Z~ lemeea]
E4+vxB ne L~ 16 ot € + (Z7Te, Fe,) & ‘”+n Zle,+e (7)

e

and
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Equation (5) is the equation of motion, (6) relates the ion slip to the current density and
(7) is the appropriate Ohm law. In (7) the first two terms are the Lorentz electric field,
next we have the Hall electric field and then the characteristic ion slip term. In contrast
to Kemp & Petschek v, in (6) contains a term in § as well as § x B, and the ratio of the
two terms is approximately the same as the corresponding terms in Ohm law (equation
(7)). Thus neither can be neglected.

An insight into the mechanism which leads to the slowing down and extraction of power
from neutral atoms can be obtained from these equations using

6ea/€ia ~ '\/(me/mz) << L.

In a segmented generator the electrons are braked by the Lorentz force acting on them as
they carry the current across the duct. There is a space charge electric field set up—the
Hall electric field—which decelerates the ions. The neutrals are slowed down by friction
with the ion gas. If the generator is not segmented then no electric field parallel to the flow
can exist. Then the ions rely on friction with the electrons to brake their motion. This
frictional force is proportional to the excess velocity of ions over electrons in the direction
of flow which constitutes a positive Hall current.

g - ——

,///: < :§\ - = =
r/___'< === P
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! e
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JPle = \\ /7
:_,__§7 A§y = > e
2p ~—hp—>

Ficure 1. A sketch of a constant area segmented electrode duct section
indicating the symbols used in the paper.

In Witalis’s notation, the magnetohydrodynamic generator duct is illustrated in
figure 1. Oppositely connected electrodes are separated by the duct width 4, the dimension
parallel to the magnetic field having a length ¢. A complete insulator and electrode have
a length 2p and the insulator length is bp(0 < & < 2). With B = (0,0, B,),

V= (vx(x, y),O, 0)’ f = (Jx (x3 y)ajy (x3 y),()) and E = (Ex (x7 y)a Ey (x’!/)a 0)>
the Ohm law (equation (7)), can be written in the component form

jx = 0Ex~ﬁiy’ (8)
jy = ”(Ey—vaz)+ﬁ];c’ (9)
oB Z7 ¢, —¢,,
where ﬂ = ;’l:; m = tan ﬂ, (10)
1 1 n, Z7'e,¢€,, e2B% \7.
and -& N ;2 63i ;Z; Z_leia—l_ €ea (1 + 7226‘2-‘1 eea):l ’ (11)

6. £ and ¢ are the reduced Hall angle, Hall parameter and conductivity respectively.
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In steady state, Maxwell’s equations give

B3
divi=0= T 3;’ (12)
oE, OE,
curtL E =0 = 3x - (13)
With the aid of (12) and (13) the operation 3(8) |9y —9(9)/x yields
Ps Yy _ Y, Yy
i Al ki R ol
= curlzf = 0. (14)
Therefore j can be represented as the gradient of a scalar function ¥ satisfying Laplace’s
equation §=—Vy, (15)
32y Py
2
e (16)

In addition, writing E’ = E+4v+-B we see below that the angle § between the current
density vector and the Lorentz electric field vector is a constant, namely tan~! f. Also
E’ x j is in the direction of the magnetic field B,; hence

E' x } A

EI j zﬂ

Therefore, with E;, = E, = 0 near the surface of the highly conducting electrode, the
current is emitted at an angle # to the normal. Similarly, near the surface of the insulator,
Jy = 0 implies that E’ is at an angle 6 to the surface.

Ztan 0 =

MeTtHOD I. CONFORMAL TRANSFORMATION

Because, in this simplified model, the problem has been reduced to a two-dimensional
solution of Laplace’s equation the method of conformal transformation can be used.
Writing z = x+iy it can be noted that in the z plane the boundaries of the duct are
straight but the current density pattern is in general very non-uniform with large concen-
trations at electrode edges and even current reversal if shorting between adjacent electrode
segments occurs. The purpose of transforming to another plane is to straighten out the
current density flux lines and the Lorentz electric field lines to a uniform mesh at an angle
f. This is carried out at the expense of distorting considerably the xy coordinates in this
new w = u-iv plane. However, if the original boundary conditions for ¥ are known then
the new boundaries of the duct in the w plane can be found. The appropriate boundary
conditions can be found from a careful study of figure 2.

In figure 2 (a) is sketched the current flow between oppositely connected segment pairs
in the absence of Hall effect, i.e. /= 0. In this symmetrical situation E, and j, will
reverse in sign midway along the insulator, i.e. there is a stationary point of ¥ here. For
small f# (figure 2(b)) this stationary point shifts towards one electrode, indicating a net
potential difference between adjacent segments. For larger values of the Hall parameter, or
smaller insulator length bp, this stationary point (located in Witalis’s notation at ap) can
be moved to the electrode. This means that a shorting current j, is now able to flow from

55-2
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one electrode to an adjacent one close to the insulator wall. This is illustrated in figure 2 (¢).
Figure 2 (d) pictures a more drastic condition when no current flows directly across the duct
between oppositely connected electrodes. Then segmentation is not very effective, and this
is the case for small b.

An exact transformation of the segmented duct to the w plane is difficult. This is because
the complete electrode section should be specified in order to complete the boundary
conditions around a closed path. The path in this case is a polygon and an intermediate
Schwarz—Ciristoffel transformation to a { plane is required to bring all the branch points and
poles on to the real axis. Then the upper half plane of the { plane is transformed to the
inside of a polygon which, for an z segment pair electrode system, will possess 62— 2 sides.

Two approximate techniques have been used to simplify the problem. Hurwitz, Kilb &
Sutton (1g61) in a classic paper assumed that the duct was infinitely long and that the
current distribution was periodic in the x direction with a periodic length 2p. They assumed
that the duct width was large compared to the segmentation length, i.e. d/2p> 1, and that
the current was homogenous in the centre of the duct. Only the case b = 1 (equal
electrode and insulator lengths) was considered, and under these assumptions they showed
that this will not lead to shorting of adjacent electrodes, i.e. a < 1 always. Recently
Witalis (1965) has extended this work for any value of 4 and his work which includes the
shorting mode duplicates much of the work carried out by the present author.

The second approximate technique has been developed by Schultz-Grunow & Denzel
(1964) and does not use the assumption d/2p > 1. Instead straight lines are drawn across
the duct from one insulator to an opposite insulator and it is assumed that no current
flows across these lines. The problem is then reduced to a two-electrode configuration,
but this artificial restriction prevents the consideration of leakage currents, and cannot
represent the generator duct in the limit of small 4.

The condition for the onset of shorting can be obtained by the transformation of Witalis.
Only one boundary is transformed and the centre of the duct is assumed to be very far
away. If we choose this boundary to be the real x axis no intermediate transformation is
required. The transformation is illustrated in figure 2. At the stationary point ap, § and
E’ go through an angle 7 while at the start of the electrode, x = bp, the change is — ({7 —6)
and at the end of the electrode, ¥ = 2p, the change is — (374 6). Since this occurs with
periodicity 2np with a zero net change of angle, the upper half of the z plane is transformed
into the upper part of the w plane bounded by an unclosed polygon using the following
Schwarz-Cristoffel transformation and the Wierstrass product expansion.

dw i 1‘2[ z+ap—2np
dz "1, (Z_bp+2np)%—0/n(z+2np)%+0/ﬂ
b sin 37(z/p—a) . (17)
[sin 37(z/p—b)JF~0 [sin §m(z]p)]H+0m

The scale of the w plane is chosen such that

. |dw
:-gg EZ, =1, (18)
. e . dw
and the orientation similarly as lim (arg a—z—) = 0. (19)
y—>
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Then &k = e~ where the current flows at an angle (6 — ) to the y direction. Equation (19)
then yields an equation relating a and «

a—b({—0[m)—2a[m = 0. (20)
Following Witalis, we can simplify the transformation to a pure translation as y - o0
lim (w—z) = fw (gﬂ——l) dz = pA,+ipA,, (21)
y—>0 0 Z z=ly

where the shifts A, and A, are functions of 4, § and «, given by Witalis and derived in several
forms in the appendix.

The angle « can be determined by prescribing the external connexion of electrodes. If
externally connected electrodes are placed geometrically opposite each other, then in the
w plane they are staggered because the current flows at an angle (6—a) to the v axis.
If we envisage a transform of the complete duct, the insulators on opposite sides of the duct
are, in the transformed w plane, collinear, this common line being the current dividing line
in the w plane between adjacent electrode pairs. The line x = 1bp transforms into the w
plane as a (curved) line which, by symmetry, intersects the current dividing line in the
middle of the duct corresponding to y = }d in the z plane. Hence, for d/2p > 1,
_[u] _ _3bo+pA,

[v] sd+pA, -

From equations (20) and (22), @ and « can be determined for a given b and d. (A, +$b) is
generally negative. Witalis has shown that oppositely connected electrodes, as given by
equation (22), yields a maximum efliciency.

The conformal mapping of the lower electrode-insulator section is illustrated for the
four examples in figure 2 discussed above. A change of 7 in the direction of the current
density or electric field in the z plane results in a change of 27 in the w plane. Therefore at
the positions ¥ = ap+2np ‘fins’ are developed in the w plane as in a similar problem of a
four-electrode germanium gyrator solved by Wick (1954). In figure 2 (2) and (b) where no
current leakage occurs (¢ < b) the fins in the w plane protrude in the direction of
showing that no current is normal to their surface (the fins of course are part of the
insulating surface) but the fins do indicate a reversal of E', i.e. there is a potential maximum
at the tip. In figure 2 (¢) and (d) where current shorting occurs (¢ > b) the fins are part of
the transformed electrode surface and protrude in a direction perpendicular to E’, such
that, on any one electrode, some current is received from the adjacent electrode down-
stream, some comes from the other side of the duct—not necessarily from the geometrically
opposite electrode—and some is lost (behind the fin) to the adjacent electrode upstream.
If external loads are connected only across geometrically opposite electrodes, then, across
any path connecting oppositely placed insulators there is no net current. Thus the back-
stream leakage currents near the insulator walls are compensated by a forward ‘Hall’
current in the central region of the duct. :

It can be seen from figure 2 (d) that as the insulator thickness becomes very small the
insulator section in the w plane becomes shorter and approaches the angle £ to the v direction
while the fins become longer and the angle « becomes smaller. In the limit of zero 4, both a
and « become zero and the fins should each become }d tand in length in the —u direction
flattened and lying against each other. This then reproduces the continuous electrode

tan (0—a) = (22)
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problem. The current flows at an angle 6 to the v axis whilst E’ is parallel to the v axis. In
the main region of the duct E’ should also be parallel to y viewed in the z plane. It is
clearer to follow a path of constant x in the w plane. Then, from the lower electrode it must,
in this limit, proceed a distance }d tan § in the —u direction to the end of the fin, then cross
the duct parallel to the v axis and at the opposite electrode pass between two fins in the —u
direction a distance 3dtan @. Thus in the limit of zero b, A, = —}dtanf and A, = 0, which
satisfies (22). For small b, « can be determined by using equation (64) in the appendix from

__ leakage current
“ electrode current

a _d .y
~;lnb_4ptant9— 3
while A, = 0 is verified.

The condition for no shorting is essentially a < b. From (20) this imposes 2 minimum
value on b depending on «, namely 20

b= foay 2 (23)
For oppositely connected electrode pairs (22) shows that « has a maximum value of ¢
corresponding to d/2p— oo for finite . Therefore the necessary and sufficient condition

(23) can be reduced to a sufficient condition given by Witalis,

insulator length < 20 .
electrode length ~ 2—b 7 =’

(24)

or, since § has a maximum value of }7 it is sufficient for the insulator to be the same length
as the electrode as used by Hurwitz et al. (1961). Naturally there is least ohmic dissipation
when b is made as small as is consistent with condition (23). These results can also be
obtained from the next method.

MetuoDp II. FOURIER ANALYSIS

In a long multisegment duct the current pattern away from the ends should repeat itself
at each segment pair. Hence the method of Fourier analysis can be used. In addition, this
technique allows the solution of current distribution even when non-uniformities in plasma
parameters are present. However, the present paper confines its attention to uniform
electrical properties and the solution of Laplace’s equation. No assumptions of homo-
geneity in the centre of duct or smallness of segments need be made, and an exact solution
can be obtained. ‘

To take advantage of the symmetry of the current pattern, the points x = 0 and y = 0
are chosen at the centre of the duct opposite two facing electrodes as in figure 3.

A solution of Laplace’s equation for § can be written as

¥ = Yo+ (aox1p)+ (buylp) + 3 [a, cosh (mny/p) sin (mux]p)+5, sinh (way]p) cos (mnsp)].

(25)
However, the boundary conditions on the electrodes give an infinite set of linear equations
for a, and b, of the form o =B, b ]'

(26)

b’l = Amn am+ an'Jf
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An alternative approach was suggested by Lighthill (private communication). If we write

Jot iy = gett

equations (12) and (14) yield a set of Cauchy—Riemann relations

a¢ J .

Fr i @111],

dg 0 .

Gy ox In j,

and ¢ is a solution in Laplace’s equation
>¢ o
pron ay? =0
{1~ - -1 4 h--

/:{ ) ;(} - 5b)p & ? (1-3b)p (14}1 le),o
| | 1
| | |
I | i
| id I I
| | |
| t |
[ !
f— = - —  ——_ e —_— il -
I ! I
1 I !
I ! I
I ! !
[ ! !
I I I
I | I
Loy ' S
~(I+3b-a)p 2=0 (I—%Ib)/) L

(27)

(29)

Ficure 3. Diagram showing the x coordinate positions used in the Fourier analysis method.

The boundary conditions for ¢ are known explicitly on the insulator and electrode, except
for the uncertainty of the location of the stationary points at ¥ = (1+4b—a), y = 4d and

¥ = —(14+3%b—a), y = —1id. To overcome this ¢(x, 3d) is written as
P(x, 3d) = ¢1(x)+¢z(x)

where g=m (—p<x<—(1-30)p)

=30 (- (1ﬁ§ )p < x < (1—=40)p)

—2m ((1—3b)p < ¥ < p),
and Py =0 (—p<ax< (14+3b—a)p)

=—n ((1+3b—a)p < x < p),
or ¢ = Bnt-0-1%0 )+E[(20/n) sin 7n(1—4b) cos (mnx/p)

-+ 1/n {cos mn(1 —4b) — cos mn} sin (mnx/p)]

and Py = —%—ﬂ(d—%b)+§[(l/n) sin 7n(1+%b—a) cos (mnx/p)

+ (1/n) {cos mn—cos mn(1++b—a)} sin (mnx/p)].

(30)
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Now the solution of (29) is of the form
B, y) = ay+ 3 [a, cosh (may/p) cos (mnxp) b, sinh (mny/p) sin (mnsfp)],  (32)
where, by symmetry, " P(x, y) = P(—x, —y). (33)
Applying the boundary condition (30) and (31) we find the coeflicients to be
ay = 3n+0—10b—Lm(a—13b),

1 . _ ]
In = n cosh (nnd|2p) {(20]m) sin wn(1 —4b) +sin m(1+3b—a)},
1

= —1p) — 1p
be = ik (mnd|2p) {cos an(1—}b) —cos mn(l +3b—a)}. (34)

The constant a is found by specifying the manner in which the electrodes are externally
connected. If geometrically opposite electrodes are connected and there is no cross
connexion, then there is no net current flow in the x direction at x = p, i.e.

0= f dex(p, y) dy. (35)
—id
Using  j = j,exp {g [, cosh (mny/p) cos (mnx|p) —a,sinh (wny[p) sin (mwnx[p)]} (36)

from (28), condition (35) can be written

1d
0 = [“exp{3 (— 1), cosh (mnylp)} cos {ay-+S[—1]"a, cosh (mylp)} dy,  (37)
0 n n
where it is noted that midway along the insulators (at x = p)

5o 9) = §(p, —9)- (38)
Equation (37) essentially determines a. For d/2p > 1, equation' (37) indicates that
cos ay = 0, and from (34) this means ¢, = $7 and

a+b(0jm—3)—20/7 = o. (39)

This is the same result as obtained by Witalis by a conformal transformation, and yields
the same criterion for no shorting between adjacent segments.

The Fourier analysis method not only makes no assumption about the relative sizes of d
and p but also is amenable to solution when the electrical properties ¢ and £ are non uniform
(but still periodic). In the notation of (27) there are now modifications to (28) and (29),
namely 5

a—ylnj——g—izfcosqﬁ,
;ln]—l— f —fsin @,
and 232254—3;—[—3 (f31n¢)+ (fcos¢) = 0,

where  f= (cos¢+ﬂsin¢)—a§ln0 (sing— ﬂcos¢)—a~ln0—51n¢—ﬂ—cos¢g’—i.

56 Vor. 261. A,
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450 M. G. HAINES

MeTHOD III. AN APPROXIMATE EQUIVALENT CIRGUIT

From the point of view of obtaining a value for the effective internal resistance and
assessing the degree of shorting of adjacent segments, the plasma can approximately be
replaced by an equivalent resistance network as illustrated in figure 4. Here the continuous
current distribution is replaced by discrete circuit elements which broadly follow the
geometric path of the current. Since j, = ¢E, in the plasma immediately adjacent to the

*—Z/o-—..
—#bp-»

- ————— {m—— — — >

Ficure 4. The approximate equivalent electric circuit for the current component flowing between
one pair of oppositely connected electrodes.

Eyp = — ——
F-o ir+a-6

E Ey

Ficure 5. Orientation of the electric vector and current density vector
in the central region of the duct.

insulator and since from a distance 2p from the wall the current flows in an almost homo-
geneous way—but at an angle to be determined, it was thought that this circuit could
represent very closely the exact formulation of method II. Figure 4 illustrates the current
paths followed by the current component of one electrode pair when the current in the
channel crosses three segments. The four current paths each have the same impedance and
sothe currentwill divide equally between them. In general if the current jumps 7 segments as
it crosses the channel, the total current in each segment gap resistance R, due to all

segments is n=1p—m
meo n+1

where [ is the current fed externally to each electrode. The leakage currents then exactly
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balance the forward Hall currents in the homogeneous part of the channel. Therefore the
voltage I, between any opposite pair of electrodes is

Vy = I(3n*R,+R,). (41)
The quantity 7 is an unknown to be determined by a self consistent solution of the homo-

genous section of the channel. The voltage drop across adjacent segments is the same
each side of the channel and so in the centre of the channel there is an electric field in the

—x direction of magnitude. n IR
| xl = 9 95" (42)

p
Similarly, \E,| = V,/d. (43)

Thus knowing the direction of the total electric field vector from these two equations, and
that the current flows across the channel at an angle § = tan™!§ to this and at an angle
tan™! (d/2np) to the x axis, we have, referring to figure 5, that the self consistent equation to

determine 7 is tan (7/2+ a— ﬁ) = d/(2np) (44)

|E l 2”R
IEI 2p§nR AR,

The resistances R, and R, can be written approximately as

Ry = [f :| ac ln (2/b) (46)

B 1 d—4p 4
and Ry = e sin? (3m+ a—0) [ oo b:l' (47)

where tan ¢ = (45)

R, includes a correction for the convergence of the homogenous current on to electrodes
(2—10) p in length. Essentially R, is made up of a central portion of length

(d—4p) cosec (3m+a—0)
and area of cross section 2pcsin (374 a—0), and two ends, adjacent to the electrodes, each of
length 2p cosec (§7+a—0) and area pc(2—b)sin (37+a—0). R, was calculated assuming
semicircular current paths between adjacent coplanar electrodes. Comparison of equations

(46) and (64) shows a similar functional dependence.
Equation (44) then gives

) o T2 2w (7,2 ()] <o

which determines z for given d/2p, b and 6. (It is easier to choose n and determine 6.)
The ideal resistance of a segmented generator is d/2pco and the ratio v of actual to ideal is

v = (3n* R,+R,) — 2/)60

= 1*(2;) 22[)1;1L {(?Zig) (14“2; QObb)+dlnﬂ{2/b)}' (49)

In general 7 is not an integer, and if # < 1 this indicates there is no shorting. In the limit
b — 0 the equations give tan § = 2np/d, R, = 0 and v = 1+tan? § correctly; and when

56-2
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0 = 0, n = 0. The condition for no current leakage (n < 1) in the limit of d/2p > 1
differs from the results of methods I and II and is

glmg < tan (37—0). (50)
T b

This method, while not reproducing the exact shorting condition, may be a good guide to
a realistic segmented duct, because, for instance, in practice the large concentration of
current density on the edge of each electrode predicted by the other methods will not occur
because the electrode cannot maintain a constant potential at this edge. In addition,
such effects as a higher conductivity in the region of the electrode can easily be
incorporated into the model by reducing R,.

CoONCLUSION

An exact solution of current distribution in a segmented electrode m.h.d. duct has been
found by Fourier analysis (method 1I). This is compared with an approximate conformal
mapping procedure (method I) and an even more approximate equivalent circuit
(method III), all of which illustrate the phenomenon of current leakage between adjacent
segments. A sufficient condition for preventing leakage currents is given.

APPENDIX. THE CONFORMAL TRANSFORMATION INTEGRAL

In this section the integral in (21) is evaluated for the transformation given in (17). The result of
this is quoted in one form by Witalis (1965). Writing,
s = Sinsm(zlp—b)

' ~%) — costmb —cot 1 inl
sin Jmzlp cos §mh — cot 7 (zJp) sin Larb (51)

. . 2p sin b ds
and, following from this, dz = 7 T %5 cos b 1 52

the integral represented by equations (21) and (17) can be written in the s plane instead of the z plane
as

J“’O (91_1{1 B 1) dr = — 2p (52 5740 o [sin for (a— b)l—s sin2 $ma] +sin b ds (52)
o \dz iy mJs 1—2scos $mb +5
where sy =cos4mb+ico and s, = cos §7b +1isin fmb. (53)

The integral along z = ¢y is now a line parallel to the imaginary s axis displaced by a distance cos 7.
Because 0 < 4 there is a singularity in the integrand at s = 0, which is of no concern here, although,
since it corresponds to the point z = fp it enters into the calculation of fin length and leakage currents
in the comments on this paper by Norris (p. 576 below). More important, at s = s, the denominator of
the integrand is zero, but, because of equation (20) the numerator is also zero, and, on expansion,
there is in fact no pole here.

Upon further investigation of the s plane the point s = s, is seen to correspond to y = o0 in the z
plane for any x. The value of x is determined by the angle at which s, is approached; the angle is 7x/p
rotating anticlockwise to the vertical (imaginary) axis,

i.e. lim arg (s —s,) = 3w +7xjp. (54)
2Y—>00

Hence for y large, x = 0 is vertically above s5,, and x = +p is vertically below s,. The point s = s, can

be considered as a branch point with the cut being the perpendicular from s, to the real axis, this latter
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corresponding to y = 0, x + 0. The infinite semicircle in the upper half of the s plane corresponds to
y = 0, x = 0 and the position on the semicircle gives dy/dx aty = 0, x = 0, namely

lim dy = — hm tan args. (55)
g

In order to evaluate the integral in (52) the path of integration in the s plane is changed to the radius

vector from infinity to s, given by s = (1/f) exp Himb

where ¢ is real and is taken from 0 to 1. This corresponds in the z plane to the path from y = 0, x = 0,
dy/dx = —tan$mbtoy = c0,x = —4p (1 —b). Since z = 0 correspondstow = Oandsincedw/dz—1 = 0
at y = oo, the integral in equation (52) is unaffected by the change in path. Then from equation (20)
the numerator of the integrand in equation (52) becomes

%it—i’—e/" [e%iﬂb — te—kmb _ (1 — t) e—i(2a—0b)] — _%_ i[e%iﬂb _ e——%iwb]
ds e—dinb _ fedind ;
T 1-2scosimb+st (1—1) (1 —2tcosmh +12)
thus giving the results of Witalis for the shifts A, and A, in equation (21),

while

A, = I;sin f—Lsiny + 3w (1 —b) 56
A, = I, cos f— Icosy—l3——§-ln(2—2cos7rb)} (56)
b L= 10l 1 E-0m ¢
where f 1—2tcosmb+12° 2 _fo 1 —2¢cosmh +£2
L e~ — e—E—0/myq
]3=JO —~— dt=f0 —-——-———l_e_q—- q (57)
= jrE-om =gt 3 |-
112 O S n n+i—0/m
J = Euler’s constant = 0-5772... = —y,(1)
Yy (2) =dInT(z)/dz
(see, for example, Morse & Feshbach p. 422-3)
= 200 —0b — 4mb,
B a 2 } (58)
v = 200 —0b+ }mb.
Using a Taylor or Fourier expansion of the form
1 L sinnmh |
1—2tcosmb+12 2 Sonb ' (59)
the integrals 7, and J, can also be represented as Fourier series
© ] b
=% - sinnmb
ney (n+1—0[m) sinwh’
i+ 10/ 0

0

sin nwb

L=

ne1 (n—%—0[m)sinmh’

A further alternative expansion of the integrals is useful for small b, i.e. small insulation lengths.

Writing r = 1—tand¢ = %

1 —0/m expansion of equation (57) yields

p(@-1) , ¢(¢-1)($-2)
L(b,9) =J R I
0 124+ 2(1—r) (1 —cosmb) ¢
=i Sinﬂb 4¢In (22 cosmb) + (917-"‘;!1)_¢(¢—21‘)3§¢“
+¢(¢"1) (p—2)(¢—-3) _ .. +0(b) (61)

3-4!
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454 M. G. HAINES
while 7, and 7; are simply

L(b,¢) = %—Il(b,¢+ 1) + 2 cosb I, (b, ) (62)
and ]3(¢):__}+¢_¢(¢_"1)+¢(¢_1) (¢—“22 . (63)

b 221 3-31

Now equation (22) determines the angle « for a given b when opposite electrodes are connected in
pairs. When b is very small, equation (22) is consistent with « also being small. The shifts A, and A, in
equation (56) in the limit of small 4 become

A, = (In7wb + I;) sin 2 + m(1 —cos 2e) + O () } (64)

A, = — (Inwb+I;) (1 —cos 2a) + 4 sin 20 + O(b).
where equations (61), (62) and (63) have been employed.
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